Ermittlung der freien Mischungsenthalpie der Systeme NaCl(l)—Na(l) und KCl(l)—K(l)

Von

A. Neckel

Aus dem Institut für Physikalische Chemie der Universität Wien

Mit 4 Abbildungen

(Eingegangen am 4. August 1965)

Die freie Mischungsenthalpie des Systems NaCl(l)—Na(l) wird nach zwei Methoden gewonnen:

1. Die freie Zusatzenthalpie der Mischung ΔG^{E} wird durch einen Ansatz nach *Redlich—Kister* dargestellt:

$$\begin{split} \Delta G^E &= x \left(1-x\right) \left\{ (h_1-Ts_1) + (2 x - 1) \left(h_2-Ts_2\right) + \right. \\ &+ \left. (2 x - 1)^2 \left(h_3-Ts_3\right) \right\}. \end{split}$$

Man bestimmt die als temperaturunabhängig angesehenen Wechselwirkungsparameter h_i und s_i (i = 1, 2, 3) durch eine Ausgleichsrechnung in der Weise, daß die bestmögliche Anpassung an die experimentell ermittelte Löslichkeitskurve erzielt wird. Die Kenntnis der Parameter h_i und s_i erlaubt die Berechnung der Mischungswärme ΔH und der Zusatzentropie der Mischung ΔS^E .

2. ΔG^E wird auf Grund der Löslichkeitskurve nach einem kürzlich vorgeschlagenen numerischen Integrationsverfahren berechnet. Beide Methoden führen zu übereinstimmenden Werten für $\Delta G^E_{1550^{\circ}\mathrm{K}}$.

Die Bestimmung von ΔG^E für das System KCl(l)—K(l) erfolgt auf Grund von Messungen der Schmelzpunktserniedrigung von KCl und der Löslichkeitskurve nach dem oben erwähnten numerischen Integrationsverfahren.

Eine einfache graphische Methode zur Berechnung der Löslichkeitskurve binärer Systeme bei Kenntnis von ΔG^{E} wird angegeben.

The Gibbs free energy of mixing of the system NaCl(l)—Na(l) is calculated by two methods:

Monatshefte für Chemie, Bd. 96/5

1. The excess Gibbs free energy ΔG^E is represented by a *Redlich*—*Kister* equation

$$\Delta G^{E} = x (1 - x) \{ (h_{1} - Ts_{1}) + (2x - 1) (h_{2} - Ts_{2}) + (2x - 1)^{2} (h_{3} - Ts_{3}) \}.$$

The constants h_i and s_i (i = 1, 2, 3), which are assumed to be temperature independant, were calculated by the method of least squares, as to fit the experimentally determined solubility curve as well as possible. The constants h_i and s_i can be used to obtain the heat of mixing ΔH and the excess entropy ΔS^E .

2. ΔG^E has been calculated from the solubility curve by a previously described numerical method. Both procedures lead to essentially the same values of $\Delta G^E_{1350^\circ\mathrm{K}}$.

 ΔG^{E} for the system KCl(*l*)—K(*l*) is obtained from measurements of the melting point depression of KCl and from the solubility curve, using the above mentioned numerical procedure.

A simple graphical method for determining the solubility curve of a binary system from known values of ΔG^E is given.

Einleitung

Um die experimentellen Untersuchungen über die Gleichgewichtslagen im System NaCl—KCl—Na—K¹ auszuwerten und das Phasen- und Reaktionsgleichgewicht dieses Systems abschätzen² zu können, bedarf es der Kenntnis der thermodynamischen Eigenschaften der Systeme NaCl—Na und KCl—K. Darüber hinaus beanspruchen Mischungen eines Alkalimetalls mit einem Alkalihalogenid insofern erhebliches Interesse, als hier bei genügend hohen Temperaturen ein kontinuierlicher Übergang vom metallischen zum rein ionischen Zustand vorliegt.

System NaCl-Na

Die Berechnung der thermodynamischen Mischungsgrößen dieses Systems * erfolgt auf Grund der experimentell bestimmten Löslichkeitskurve³ nach zwei Methoden:

Methode a: Die freie Zusatzenthalpie des Mischens ΔG^E , die Mischungswärme ΔH und die Zusatzentropie ΔS^E werden durch *Redlich*— *Kister*-Ansätze⁴ dargestellt ($x = x_{Na}$):

* Eine Abschätzung der thermodynamischen Größen wurde auch von K. S. Pitzer, J. Amer. Chem. Soc. 84, 2025 (1962), vorgenommen.

¹ A. Neckel, R. Sponer und H. Nowotny, Mh. Chem. 96, 1633 (1965).

² A. Neckel, Mh. Chem. 96, im Druck (1965).

³ a) M. A. Bredig und H. R. Bronstein, J. Physic. Chem. 64, 64 (1960);
b) H. R. Bronstein und M. A. Bredig, J. Amer. chem. Soc. 80, 2077 (1958);
c) M. A. Bredig, J. W. Johnson und W. T. Smith, Jr., J. Amer. chem. Soc. 77, 307 (1955).

4 O. Redlich und A. T. Kister, Ind. Engng. Chem. 40, 345 (1948).

Ermittlung der freien Mischungsenthalpie

$$\Delta G^E = x (1-x) \{ g_1 + (2 x - 1) g_2 + (2 x - 1)^2 g_3 \}, \tag{1}$$

$$\Delta H = x (1 - x) \{ h_1 + (2 x - 1) h_2 + (2 x - 1)^2 h_3 \}, \qquad (2)$$

$$\Delta S^{E} = x (1 - x) \{ s_{1} + (2 x - 1) s_{2} + (2 x - 1)^{2} s_{3} \},$$
(3)

wobei stets

$$g_i = h_i - Ts_i$$
 $(i = 1, 2, 3)$. (4)

gilt.

Die Konstanten h_i und s_i werden näherungsweise als temperaturunabhängig angesehen; 'd. h. der Zusatzbeitrag ΔC_p zur Molwärme der Mischungen wird vernachlässigt.

Um die sechs unbekannten Parameter h_i und s_i (i = 1, 2, 3) zu bestimmen, werden die thermodynamischen Bedingungen für den kritischen Punkt der Löslichkeitskurve

$$\left(\frac{\mathrm{d}^2 \Delta H}{\mathrm{d} x^2}\right)_{x_{c,T_c}} = T_c \left(\frac{\mathrm{d}^2 \Delta S^E}{\mathrm{d} x^2} + \frac{\mathrm{d}^2 \Delta S^{id}}{\mathrm{d} x^2}\right)_{x_{c,T_c}}$$
(5)

$$\left(\frac{\mathrm{d}^3 \Delta H}{\mathrm{d} x^3}\right)_{x_c, T_c} = T_c \left(\frac{\mathrm{d}^3 \Delta S^E}{\mathrm{d} x^3} + \frac{\mathrm{d}^3 \Delta S^{id}}{\mathrm{d} x^3}\right)_{x_c, T_c} \tag{6}$$

 $(T_c: \text{krit. Lösungstemp.}, x_c: \text{krit. Molenbruch})$ und die Bedingungen für die Koexistenz der Phasen (I und II)

$$\Delta G^{\mathrm{Mi}}(x^{\mathrm{I}}) - x^{\mathrm{I}} \left(\frac{\partial \Delta G^{\mathrm{Mi}}(x^{\mathrm{I}})}{\partial x} \right) = \Delta G^{\mathrm{Mi}}(x^{\mathrm{II}}) - x^{\mathrm{II}} \left(\frac{\partial \Delta G^{\mathrm{Mi}}(x^{\mathrm{II}})}{\partial x} \right), \quad (7a)$$

$$\Delta G^{\mathrm{Mi}}(x^{\mathrm{I}}) + (1 - x^{\mathrm{I}}) \left(\frac{\partial \Delta G^{\mathrm{Mi}}(x^{\mathrm{I}})}{\partial x} \right) =$$

$$= \Delta G^{\mathrm{Mi}}(x^{\mathrm{II}}) + (1 - x^{\mathrm{II}}) \left(\frac{\partial \Delta G^{\mathrm{Mi}}(x^{\mathrm{II}})}{\partial x} \right) \qquad (7b)$$

herangezogen*.

* Um eine von den Gln.(5) bis (7) verschiedene funktionelle Abhängigkeit der Parameter zu erhalten, könnte man daran denken, die Gleichung für die Tangente an die Löslichkeitskurve

$$\begin{pmatrix} \mathrm{d} \ T \\ \mathrm{d} \ x \end{pmatrix}_{\mathrm{koex}} = \frac{(x^{\mathrm{II}} - x^{\mathrm{I}}) \frac{\partial^2 \Delta \ G^{\mathrm{Mi}}}{\partial x^2}}{\Delta \ S^{\mathrm{Mi}}, \ \mathrm{II} - \Delta \ S^{\mathrm{Mi}}, \ \mathrm{I} - (x^{\mathrm{II}} - x^{\mathrm{I}}) \frac{\partial \Delta \ S^{\mathrm{Mi}}}{\partial x}$$

zu benützen.

Doch sind für die vorliegenden Systeme die Werte von $\left(\frac{\mathrm{d} T}{\mathrm{d} x}\right)_{\mathrm{koex}}$ zu unsicher.

104*

1619

Einsetzen der Ausdrücke (1), (2) und (3) in die Gleichungen (5), (6) und (7) führt zu einem Satz von Bestimmungsgleichungen für die unbekannten Parameter h_i und s_i . Bei der Anwendung auf das vorliegende System tritt jedoch die Schwierigkeit auf, daß nicht die Konzentrationen beider bei einer bestimmten Temperatur koexistierenden Phasen bestimmt worden sind, sondern jeweils nur Werte für die eine oder andere Phase vorliegen. Daher wurde in einem T-x-Diagramm durch die experimentellen Punkte eine ausgleichende Kurve gelegt und die Konzentrationen der koexistenten Phasen dieser Kurve entnommen.

Die thermodynamischen Bedingungen für den kritischen Punkt (5) und (6) liefern zwei Gleichungen. Ferner wurden für je sechs Temperaturen mit Hilfe der aus der Löslichkeitskurve entnommenen Konzentrationen und unter Benützung von (7 a) und (7 b) zwölf weitere Gleichungen aufgestellt, so daß insgesamt vierzehn Bestimmungsgleichungen für die sechs unbekannten Konstanten h_i und s_i zur Verfügung standen. Diese Gleichungen wurden nach der Gaußschen Methode der kleinsten Quadrate in sechs Normalgleichungen übergeführt, deren Lösung die unbekannten Parameter h_i und s_i liefert. Folgende Konstanten wurden erhalten:

Tabelle 1. Mischungswärme ΔH , Zusatzentropie ΔS^E und freie Zusatzenthalpie ΔG^E des Systems NaCl—Na bei 1350°K, ber. nach Methode a)

$x_{ m Na}$	Δ H cal/Mol	ΔS^E cal/Grad · Mol	$\Delta \ G^E_{1350^\circ\mathrm{K}}$ cal/Mol
0.05	777	0,343	314
0.10	1398	0,602	585
0.20	2252	0,920	1009
0.30	2711	1,048	1296
0.40	2890	1,058	1462
0.50	2868	1,000	1518
0.60	2686	0,904	1465
0.70	2353	0,780	1301
0.80	1843	0,613	1015
0.90	1091	0,372	589
0,95	595	0,206	317

Die mit Hilfe dieser Konstanten berechneten thermodynamischen Funktionen ΔH , ΔS^E und ΔG^E ($T = 1350^{\circ}$ K) sind in Tab. 1 zusammengestellt.

Der Verlauf der Funktionen $\Delta H/x(1-x)$, $\Delta S^E/x(1-x)$ und $\Delta G_{1350^{\circ}K}^E/x(1-x)$ ist in Abb. 1 wiedergegeben. Bedingt durch die relativ großen Zahlenwerte für die Parameter h_3 und s_3 , beobachtet man eine starke Durchkrümmung der $\Delta H/x(1-x)$ - und $\Delta S^E/x(1-x)$ -Kurven. Dieser Effekt

könnte, im Sinne der Theorie der strengregulären Lösungen⁵, auf eine starke Bevorzugung gleichartiger Nachbarn (Cluster-Bildung) zurückgeführt werden. Jedoch sind auch noch andere Ursachen in Erwägung zu ziehen. Die als temperaturunabhängig angesehenen Funktionen ΔH und ΔS^{E} sind so bestimmt,

⁵ E. A. Guggenheim, Mixtures, Clarendon Press, London, 1952.

daß sie die bestmögliche Wiedergabe der Löslichkeitskurve gestatten. Die Löslichkeitskurve und damit die ΔH - und ΔS^E -Werte in den Randbereichen (x < 0,1 und x > 0,9) entsprechen jedoch Temperaturen, die bis zu 280° unterhalb der kritischen Temperatur liegen. Wenn nun ΔH und ΔS^E eine Temperaturabhängigkeit in dem Sinne zeigen, daß sie mit zunehmender Temperaturabhängigkeit vernachlässigt wurde, zu höheren ΔH - bzw. ΔS^E -Werten in den Randbereichen und damit zu einer starken Durchkrümmung der Funktionen

Abb. 2. Graphische Methode zur Bestimmung der Konzentrationen koexistenter Mischphasen $\Delta H/x(1 - x)$ und $\Delta S^E/x(1 - x)$ führen. Es besteht jedoch auch die Möglichkeit, daß die Löslichkeitskurve in den Randbereichen experimentell als zu steil abfallend bestimmt wurde und dadurch die hohen Werte für h_3 und s_3 nur vorgetäuscht werden.

Um zu überprüfen, inwieweit die auf diese Weise gewonnenen Parameter (8) die experimentellen Befunde wiederzugeben vermögen, wurde mit ihrer Hilfe die Löslichkeitskurve zurückgerechnet. Obwohl in der Literatur verschiedene Methoden angegeben sind, mit deren Hilfe man aus Daten der freien Mischungsenthalpie Löslichkeitskurven berechnen kann, so z. B. das Anlegen einer Doppeltangente an die ΔG^{Mi} --x-Kurve u. a.⁶, wurde das nachfolgend beschriebene Verfahren, das die Konzentrationen der koexistenten Phasen mit beliebiger Genauigkeit festzulegen gestattet, als überaus zweckmäßig befunden*.

* Wegen numerischer Verfahren zur Berechnung der Binodalkurve aus Ansätzen für ΔG^{Mi} vergleiche man Zitat².

⁶ Vgl. z. B.: H. Wolff und K. Bernstorff, Z. Elektrochem. 62, 1093 (1958).

H. 5/1965] Ermittlung der freien Mischungsenthalpie

Man trägt in einem Diagramm für den zu erwartenden Konzentrationsbereich das chemische Potential $\Delta \overline{G}_1^{I}$ gegen x^{I} und unter Benützung eines zweiten Abszissenmaßstabes $\Delta \overline{G}_1^{II}$ gegen x^{II} auf. Auf transparentem Papier trägt man nun in gleicher Weise und unter Verwendung der gleichen Maßstäbe $\Delta \overline{G}_2^{I}$ gegen x^{I} und $\Delta \overline{G}_2^{II}$ gegen x^{II} auf. Nun legt man das transparente Papier ($\Delta \overline{G}_2 - x$ -Diagramm) so über das $\Delta \overline{G}_1 - x$ -Diagramm, daß die Abszissenmaßstäbe übereinstimmen, und verschiebt es in Richtung der Ordinatenachse, bis der Schnittpunkt der $\Delta \overline{G}_1^{I} - x^{I}$ -und $\Delta \overline{G}_2^{I} - x^{I}$ -Kurve

t,°C	x^{T}	x^{11}
800	0,0194	0,9684
820	0,0233	0,9634
870	0,0365	0,9473
920	0,0573	0,9237
970	0,0921	0,8875
1020	0,1576	0,8252
1050	0,2378	0,7555
1070	0,3640	0,6547
krit. Punkt 1076,5	0,5199	0,5199

Tabelle 2. Berechnete Entmischungspunkte des Systems NaCl--Na

auf einer Horizontalen mit dem Schnittpunkt der $\Delta G_1^{II} - x^{II}$ und $\Delta \overline{G}_2^{II} - x^{II}$ -Kurve zu liegen kommt (vgl. Abb. 2). Dann sind die Bedingungen (7 a) und (7 b) gleichzeitig erfüllt, und an den Abszissenmaßstäben sind die Konzentrationen der koexistenten Phasen abzulesen. Es ist also nicht nötig, den Verlauf der chemischen Potentiale bzw. den von ΔG^{Mi} im gesamten Konzentrationsgebiet darzustellen, sondern es genügen die engen Bereiche um die Zusammensetzungen der koexistenten Phasen. Da die Abszissenmaßstäbe beliebig groß gewählt werden können, erlaubt das geschilderte Verfahren die rasche Bestimmung der Molenbrüche der koexistenten Phasen mit beliebiger Genauigkeit.

In Tab. 2 sind die auf diese Weise und unter Benützung der angegebenen Parameterwerte erhaltenen Gleichgewichtskonzentrationen zusammengestellt. Abb. 3 zeigt die berechnete Löslichkeitskurve und die von M. A. Bredig und Mitarb.³ experimentell bestimmten Entmischungspunkte.

Methode b: Als weiteres Verfahren für die Berechnung der freien Zusatzenthalpie ΔG^E des Systems NaCl—Na aus der Löslichkeitskurve wurde eine kürzlich vorgeschlagene Methode^{7, 8} herangezogen.

⁷ A. Neckel, Mh. Chem. 92, 468 (1961).

⁸ A. Neckel, Mh. Chem. 96, 82 (1965).

Ausgehend von den Gleichgewichtsbedingungen (7) kann man bei Kenntnis der Zusatzentropie ΔS^{E*} und des Zusatzbeitrages zur Molwärme der Mischung ΔC_p folgende Beziehungen für die Änderung von $\frac{\partial \Delta G^E}{\partial x}$ in dem kleinen Konzentrationsintervall $(x_i - x_{i-1})$ ableiten:

$$\Delta_{i}^{\mathrm{II}}\left[\frac{\partial \Delta G^{E}(T_{0})}{\partial x}\right] \equiv \frac{\partial \Delta G^{E}(T_{0}, x_{i}^{\mathrm{II}})}{\partial x} - \frac{\partial \Delta G^{E}(T_{0}, x_{i-1}^{\mathrm{II}})}{\partial x} = -\frac{2(f_{i} - f_{i-1}) - (x_{i-1}^{\mathrm{I}} - x_{i}^{\mathrm{I}})(d_{i} + d_{i-1})}{(x_{i}^{\mathrm{II}} - x_{i}^{\mathrm{I}}) + (x_{i-1}^{\mathrm{II}} - x_{i-1}^{\mathrm{I}})},$$
(9)

Abb. 3. Vergleich der berechneten Löslichkeitskurve (ausgezogene Kurve) des Systems NaCl-Na mit experimentellen Meßpunkten:

- O : M. A. Bredig u. Mitarb.^{3a} ★ : M. A. Bredig u. Mitarb.^{3c}
- X : M. A. Bredig u. Mitan
 : krit. Punkt (ber.)
- worin T_0 eine Bezugstemperatur, im vorliegenden Falle die kritische Temperatur, bedeutet. x_i^{I} und x_i^{II} sind die Molenbrüche der bei der Temperatur T_i koexistenten Phasen. f_i und d_i werden als Abkürzungen für die Ausdrücke

^{*} An Stelle von ΔS^E kann auch die Mischungswärme ΔH herangezogen werden; vgl.⁸.

H. 5/1965]

$$\begin{split} f_{i} &= \Delta G^{id} \left(T_{i}, x_{i}^{\mathrm{I}} \right) - \Delta G^{id} \left(T_{i}, x_{i}^{\mathrm{II}} \right) + \left(x_{i}^{\mathrm{II}} - x_{i}^{\mathrm{I}} \right) \frac{\partial \Delta G^{id} \left(T_{i}, x_{i}^{\mathrm{II}} \right)}{\partial x} + \\ &+ \left(T_{i} - \left(T_{0} \right) \left[\Delta S^{E} \left(T_{0}, x_{i}^{\mathrm{II}} \right) - \Delta S^{E} \left(T_{0}, x_{i}^{\mathrm{I}} \right) \right] - \\ &- \left(x_{i}^{\mathrm{II}} - x_{i}^{\mathrm{I}} \right) \left(T_{i} - T_{0} \right) \frac{\partial \Delta S^{E} \left(T_{0}, x_{i}^{\mathrm{II}} \right)}{\partial x} + \\ &+ \int_{T_{0}}^{T_{i}} dT \int_{T_{0}}^{T_{i}} \Delta C_{p} \left(x_{i}^{\mathrm{II}} \right) d\ln T - \int_{T_{0}}^{T_{i}} dT \int_{T_{0}}^{T_{i}} \Delta C_{p} \left(x_{i}^{\mathrm{I}} \right) d\ln T - \\ &- \left(x_{i}^{\mathrm{II}} - x_{i}^{\mathrm{I}} \right) \int_{T_{0}}^{T_{i}} dT \int_{T_{0}}^{T_{i}} \frac{\partial \Delta C_{p} \left(x_{i}^{\mathrm{II}} \right)}{\partial x} d\ln T \end{split}$$
(10)

und

$$d_{i} = \frac{\partial \Delta G^{id} (T_{i}, x_{i}^{\mathrm{II}})}{\partial x} - \frac{\partial \Delta G^{id} (T_{i}, x_{i}^{\mathrm{I}})}{\partial x} - (T_{i} - T_{0}) \left[\frac{\partial \Delta S^{E} (T_{0}, x_{i}^{\mathrm{II}})}{\partial x} - \frac{\partial \Delta S^{E} (T_{0}, x_{i}^{\mathrm{II}})}{\partial x} \right] - \int_{T_{0}}^{T_{i}} \frac{T_{i}}{\partial x} \frac{T_{i}}{\partial x} d\ln T + \int_{T_{0}}^{T_{i}} \frac{\partial \Delta C_{p} (x_{i}^{\mathrm{II}})}{\partial x} d\ln T$$
(11)

geschrieben.

Für die Änderung

$$\Delta_{i}^{\mathrm{I}}\left[\frac{\partial \Delta G^{E}\left(T_{0}\right)}{\partial x}\right] \equiv \frac{\partial \Delta G^{E}\left(T_{0}, x_{i-1}^{\mathrm{I}}\right)}{\partial x} - \frac{\partial \Delta G^{E}\left(T_{0}, x_{i}^{\mathrm{I}}\right)}{\partial x}$$
(12)

erhält man:

$$\Delta_{i}^{\mathrm{I}}\left[\frac{\partial\Delta G^{E}\left(T_{0}\right)}{\partial x}\right] = d_{i-1} - d_{i} - \Delta_{i}^{\mathrm{II}}\left[\frac{\partial\Delta G^{E}\left(T_{0}\right)}{\partial x}\right].$$
(13)

Der Berechnung wurde nicht die sich aus den Parametern (8) ergebende Löslichkeitskurve zugrunde gelegt, sondern jene, die durch graphischen Ausgleich der experimentellen Entmischungspunkte erhalten wurde und die von der ersteren etwas abweicht. So liegt beispielsweise der kritische Punkt bei $x_c = 0,4900$ und $T_c = 1352,7^{\circ}$ K; während die Parameter (8) zu $x_c = 0,5199$ und $T_c = 1349,7^{\circ}$ K führen. Ferner wurde, da für das System NaCl—Na keine experimentellen Bestimmungen für ΔS^E bzw. ΔH und ΔC_p vorliegen, die nach der Methode a) für ΔS^E erhaltenen Werte verwendet, während ΔC_p näherungsweise als Null angenommen wurde.

GE	\mathbf{K}
⊲ 0	.7°
i pi	352
hal	
nt	
tze	1 (5
.8.8.	Mo
Σu	3.1/J
en	о с
rei	Г
ŗf	$\tilde{\mathbf{Z}}$
dе	- 5
te	И & (
Vei	L S J
e V	enc
ıet	$\mathbf{y}_{\mathbf{s}}$ t
chr	т С
ere	de
pé	Na
(q	$\overline{\Delta 6}$
ode	nd
$_{\mathrm{th}}$	n r
(Me	NaC
n	$\Delta \overline{Q}$
tic	Je
gra	tia
te	ten
Ir	p o d
ьhе	atz
1sC	us
neı	n Z
uu	he
q	isc
urc	θm
ā	$^{\mathrm{ch}}$
е3.	ler
bell	d c
Tai	un

Nr.	$T, ^{\circ}\mathrm{K}$	$x_{\mathrm{Na}}^{\mathrm{I}}$	$x_{ m Na}^{ m II}$	$_{\Delta G^{H}} ig(x_{ m Na}^{ m I}ig)$	$_{\Delta G^{E}}(x_{\mathrm{Na}})$	$\Delta \overline{G}^{E}_{ m NaCl} \left(x_{ m Na}^{ m I} ight)$	$\Delta \overline{G}^{E}_{ m NaCl}\left(x^{ m II}_{ m Na} ight)$	$\Delta \widetilde{\sigma}^{E}_{\mathrm{Na}} \left(x^{\mathrm{I}}_{\mathrm{Na}} ight)$	${\Delta} \overline{e}^{E}_{ m Nn}\left(x^{ m H}_{ m Na} ight)$
0	1352,7	0,4900	0,4900	1514	1514	1462	1462	1569	1569
-	1348, 2	0,3788	0,6200	1435	1436	935	2249	2255	938
5	1343,2	0,3280	0,6680	1353	1360	729	2604	2631	742
ია	1333,2	0,2709	0,7215	1225	1243	523	3052	3112	545
4	1323, 2	0,2329	0,7531	1117	1158	403	3343	3471	441
ų	1313,2	0,2037	0,7776	1022	1083	319	3585	3771	367
9	1303,2	0,1800	0,7979	936	1014	257	3796	4031	310
7	1283,2	0,1429	0,8305	787	894	172	4158	4475	227
8	1273, 2	0,1282	0,8441	722	839	142	4317	4664	196
6	1253,2	0,1044	0,8672	610	740	100	4600	4986	149
10	1243, 2	0,0939	0,8776	557	693	17	4687	5191	136
11	1223, 2	0,0769	0,8955	468	609	58	4978	5400	66
12	1203,2	0,0630	0,9107	392	533	40	5197	5630	75
13	1183,2	0,0518	0,9237	329	465	28	5395	5827	57
14	1163,2	0,0426	0,9347	274	405	20	5572	6001	44
15	1143,2	0,0355	0,9439	232	353	14	5722	6129	34
16	1113,2	0,0273	0,9543	181	293	6	5892	6289	25
17	1068, 2	0,0212	0,9662	142	222	9	6116	6414	16

H. 5/1965]

Durch Aufsummieren der Größen $\Delta_i \left[\frac{\partial \Delta G^E(T_0)}{\partial x} \right]$ gelangt man zu den Werten für $\left(\frac{\partial \Delta G^E(T_0)}{\partial x} + C \right)$, worin C eine noch unbestimmte und zunächst willkürlich festgelegte Integrationskonstante darstellt. Da sich die Mischungslücke bei der monotektischen Temperatur $T = 1068, 2^{\circ}$ K über nahezu den gesamten Konzentrationsbereich erstreckt, ist eine Extrapolation von $\left(\frac{\partial \Delta G^E(T_0)}{\partial x} + C \right)$ in den Grenzbereichen $x \to 0$ und $x \to 1$ leicht durchführbar. Die Integrationskonstante wird dann durch die Bedingung

$$\int_{a}^{x=1} \frac{\partial \Delta G^{E}(T_{0})}{\partial x} dx = 0$$
(14)

festgelegt. Durch numerische Integration von $\frac{\partial \Delta G^{E}(T_{0})}{\partial x}$ erhält man

 $\Delta G^E(T_0)$. Eine Auswahl der auf diese Weise für $T_0 = 1352,7^{\circ}$ K berechneten Werte von $\Delta G^E(T_0)$ und der chemischen Potentiale der Komponenten ist in Tab. 3 zusammengestellt. In Spalte 2 dieser Tabelle ist auch die Gleichgewichtstemperatur T_i angegeben, die den Molenbrüchen $x_i^{\rm I}$ und $x_i^{\rm II}$ entspricht.

Wie Abb. 4 zeigt, liefern beide Methoden, trotz geringer Unterschiede der zugrundeliegenden Löslichkeitskurven, praktisch übereinstimmende Werte für ΔG^E .

System KCl-K

Beim Abkühlen einer KCl—K-Schmelze kristallisiert im Konzentrationsbereich $0 \leq x_{\rm K} \leq 0.116$ praktisch reines KCl aus⁹. Auf Grund der Schmelzpunktserniedrigungen können die Aktivitätskoeffizienten von KCl in der Schmelze bei der Gleichgewichtstemperatur T nach

$$\ln f_{\rm KCl, T} = -\frac{(L_{(T_G)} - \Delta C_p T_G)}{R} \frac{(T_G - T)}{T_G T} + \frac{\Delta C_p}{R} \ln \frac{T}{T_G} - \ln (1 - x)$$
$$\approx -\frac{L_{(T_G)}}{R} \frac{(T_G - T)}{T_G T} + \frac{\Delta C_p}{2R} \frac{(T_G - T)^2}{T_G T} - \ln (1 - x)$$
(15)

berechnet werden.

⁹ J. W. Johnson und M. A. Bredig, J. Physic. Chem. 62, 604 (1958).

A. Neckel:

 $L_{(T_G)}$: Schmelzwärme von reinem KCl,

$$L_{(T_G)} = 6270 \text{ cal/Mol}^{10}$$

 T_G : Schmelztemp. von reinem KCl,

 $T_{G} = 1042.7^{\circ} \,\mathrm{K}$

$$C_{n}$$
 (1) - C_{n} (s) = 6.11 - 5.20 \cdot 10⁻³ T - 0.77 \cdot 10⁵ T^{-2 -11}

x: Molenbruch von K.

Die ermittelten Aktivitätskoeffizienten sind in Tab. 4 wiedergegeben. Ihre Umrechnung auf eine Bezugstemperatur (z. B. die Schmelztemp. von

¹⁰ T. B. Douglas, Natl. Bur. Stand., zit. bei A. S. Dworkin und M. A. Bredig, J. Physic. Chem. **64**, 269 (1960).

¹¹ O. Kubaschewski und E. L. Evans, Metallurg. Thermochem., Pergamon Press, London 1956.

H. 5/1965] Ermittlung der freien Mischungsenthalpie

reinem KCl) konnte nicht erfolgen, da die partiellen molaren Mischungswärmen $\Delta \widetilde{H}_{\text{KCl}}$ nicht bekannt sind.

$(1 - x_{\rm K})$	T, °K	$\lg f_{\mathrm{KCl}}, T$	1044 ($R \ln f KCl, T$) cal/Mol
1.00	1042,7	0.00000	0
0,98	1037,4	0,00206	10
0,96	1033,1	0,00552	26
0,94	1029,8	0,01042	50
0,92	1027, 6	0,01691	81
0,90	1025,9	0,02425	116
0,884	1024,7	0,03048	146
0,291	1024.7	0.51304	2450

Tabelle 4. Dekadische Logarithmen der Aktivitätskoeffizienten von KCl, berechnet aus der Schmelzkurve

Tabelle 5. Durch numerische Integration (Methode b) berechnete Werte für $\Delta \overline{G}_{\text{KCl}}^{E}$ in cal/Mol ($T \approx 1044^{\circ}$ K)

Nr.	<i>T</i> , °K	x^{I}	x^{II}	$\Delta \overline{G}^{E}_{ m KCl} \left(x^{ m I} ight)$	$\Delta \bar{\boldsymbol{G}}_{\mathrm{KCl}}^{E} \left(\boldsymbol{x}^{\mathrm{H}} \right)$
0	1062,5	0,392	0,392	917	917
1	1062, 2	0,348	0,438	769	1082
2	1062,0	0,335	0,448	727	1120
3	1061,6	0,319	0,464	677	1182
4	1061,2	0,306	0,476	637	1229
5	1060,8	0,295	0,485	605	1268
6	1060, 4	0,286	0,493	577	1298
7	1059,8	0,274	0,504	542	1344
8	1058,8	0,258	0,519	497	1408
9	1057,2	0,240	0,540	447	1501
10	1055,2	0,222	0,561	399	1600
11	1053,2	0,208	0,578	363	1681
12	1047,2	0,176	0,619	282	1888
13	1043,2	0,160	0,640	244	2000
14	1037,2	0,141	0,667	200	2153
15	1031,2	0,127	0,690	169	2291
16	1024,7	0,116	0,709	146	2410

Für die Berechnung der Aktivitätskoeffizienten im Konzentrationsbereich 0,116 $\leq x_{\rm K} \leq 0,709$ wurde die Mischungslücke dieses Systems herangezogen. Nach den Untersuchungen von *Johnson* und *Bredig*⁹ durchschneidet die Löslichkeitskurve bei 1024,7° K und den Molenbrüchen $x_{\rm K}^{\rm I} = 0,116$ und $x_{\rm K}^{\rm II} = 0,709$ die Schmelzkurve von KCl (Monotektikum). Für das System liegen keine Messungen der Mischungswärme ΔH oder der Zusatzentropie ΔS^E vor. Da ferner das Temperaturintervall der Mischungslücke [1062,5° K (= T_c) — 1024,7° K] nur 38° beträgt, schien es wenig aussichtsreich, die Zusatzentropie mit Hilfe eines *Redlich*—*Kister*-Ansatzes, wie beim System NaCl—Na beschrieben (Methode a), auch nur näherungsweise bestimmen zu wollen. Für die Ermittlung von $\Delta \overline{G}_{\text{KCl}}^E$ wurde daher das numerische Verfahren (Methode b) herangezogen und die Temperaturabhängigkeit von ΔG^E vernachlässigt; d. h. alle Terme mit ΔS^E und ΔC_p in den Gleichungen (10) und (11) wurden näherungsweise Null gesetzt. Dieses Vorgehen mag insofern berechtigt sein, als man annehmen kann, daß sich ΔG^E in dem kleinen Temperaturintervall mit der Temperatur praktisch nicht ändert. Die erhaltenen thermodynamischen Größen beziehen sich allerdings dann auf eine mittlere Temperatur von etwa 1044° K.

Da für dieses System eine Extrapolation von $\left(\frac{\partial \Delta G^E(T_0)}{\partial x} + C\right)$ für $x \to 0$ und $x \to 1$ nicht möglich ist, wurden nach einem in⁸ beschriebenen Verfahren die Änderungen der chemischen Zusatzpotentiale $\Delta_i (\Delta \widetilde{G}^E_{\mathrm{KCl}})$ und $\Delta_i (\Delta \widetilde{G}^E_{\mathrm{K}})$ in den kleinen Konzentrationsintervallen $(x_i - x_{i-1})$ nach

$$\Delta_{i} \left(\Delta \, \overline{G}_{\text{KCl}}^{E} \right) \approx - \overline{x_{i}} \, \Delta_{i} \left[\frac{\partial \, \Delta \, G^{E} \left(T_{0} \right)}{\partial \, x} \right]$$
(16a)

und

$$\Delta_{i} \left(\Delta \overline{G}_{\mathbf{K}}^{E} \right) \approx \left(1 - \overline{x_{i}} \right) \Delta_{i} \left[\frac{\partial \Delta G^{E} \left(T_{\mathbf{0}} \right)}{\partial x} \right]$$
(16b)

berechnet. x_i ist der Mittelwert des Molenbruches im Konzentrationsintervall $x_i - x_{i-1}$. Durch Aufsummieren der Größen (16) gelangt man zu den chemischen Zusatzpotentialen. Hierzu bedarf es jedoch der Kenntnis von Anfangswerten für $\Delta \overline{G}_{\mathbf{K}Cl}^E$ und $\Delta \overline{G}_{\mathbf{K}}^E$.

Vernachlässigt man die Temperaturabhängigkeit, dann kann man näherungsweise annehmen, daß sich die aus den Gefrierpunktserniedrigungen ermittelten Aktivitätskoeffizienten auch auf die Temperatur 1044° K beziehen. Dieser Näherung entsprechen die in der letzten Spalte der Tab. 4 angegebenen Werte für $\Delta \overline{G}_{\text{KCl}}^E$ (1044° K) \approx 1044 ($R \ln f_{\text{KCl}}, T$). So gelangt man für x = 0,116 zu einem Anfangswert für $\Delta \overline{G}_{\text{KCl}}^E$), nämlich 146 cal/ Mol, und durch Aufsummieren der Größen Δ_i ($\Delta \overline{G}_{\text{KCl}}^E$) zu dem chemischen Zusatzpotential von KCl im Konzentrationsbereich 0,116 $< x \leq 0,709$. Eine Auswahl der erhaltenen Werte ist in Tab. 5 wiedergegeben, in die auch die Gleichgewichtstemperatur, die den Molenbrüchen der koexistenten Phasen entspricht, aufgenommen ist. Für x = 0,709 erhält man $\Delta \overline{G}_{\text{KCl}}^E = 2410$ cal/ Mol, während sich aus der Schmelzpunktserniedrigung $\Delta \overline{G}_{\text{KCl}}^E = 2450$ cal/ Mol ergibt. Der Unterschied von etwa 2% ist durch die verschiedenen Näherungen bedingt.

H. 5/1965] Ermittlung der freien Mischungsenthalpie

Für Kalium hingegen liegt kein Anfangswert des chemischen Zusatzpotentials vor. Um auch für diese Komponente einen Bezugswert zu erhalten, wurde durch die oben ermittelten Werte für $\Delta \tilde{G}_{\text{KCi}}^{E}$ (Tab. 5) eine ausgleichende Kurve, beruhend auf dem Ansatz

$$\Delta G^{E} = x(1-x) \left[g_{1} + (2x-1)g_{2} + (2x-1)^{2}g_{3} + (2x-1)^{3}g_{4} \right], \qquad (17)$$

$$(x = x_{\rm K})$$

gelegt.

Tabelle 6. Berechnete Werte für die freie Zusatzenthalpie ΔG^E und die chemischen Zusatzpotentiale $\Delta \widetilde{G}^E_{\text{KCl}}$ und $\Delta \widetilde{G}^E_{\text{K}}$ der Komponenten des Systems KCl--K in cal/Mol

x_{K}	ΔG^{E}	$\Delta G_{\mathbf{KCl}}^{E}$	$\Delta \overline{G}_{\mathbf{K}}^{E}$
0.00	0	0	6380
0,05	285	32	5092
0,10	510	111	4104
0,20	826	343	2758
0,30	1008	621	1913
0,40	1091	941	1316
0,50	1085	1330	840
0,60	993	1805	451
0,70	816	2334	165
0,80	566	2794	8
0,90	273	2936	23
0,95	129	2764	10
1,00	0	2340	0

$$\begin{split} & \text{Für } \Delta \overline{G}_{\text{KCl}}^{E} \text{ und } \Delta \overline{G}_{\text{K}}^{E} \text{ erhält man mit (17) folgende Ausdrücke:} \\ & \Delta \overline{G}_{\text{KCl}}^{E} = x^{2} \, g_{1} + (-3 \, x^{2} + 4 \, x^{3}) \, g_{2} + (5 \, x^{2} - 16 \, x^{3} + 12 \, x^{4}) \, g_{3} + \\ & + (-7 \, x^{2} + 36 \, x^{3} - 60 \, x^{4} + 32 \, x^{5}) \, g_{4}, \end{split} \tag{18 a} \\ & \Delta \overline{G}_{\text{K}}^{E} = (1 - x)^{2} \, g_{1} - \{-3 \, (1 - x)^{2} + 4 \, (1 - x)^{3}\} \, g_{2} \\ & + \{5 \, (1 - x)^{2} - 16 \, (1 - x)^{3} + 12 \, (1 - x)^{4}\} \, g_{3} \end{aligned} \tag{18 b} \\ & -\{-7 \, (1 - x)^{2} + 36 \, (1 - x)^{3} - 60 \, (1 - x)^{4} + 32 \, (1 - x)^{5}\} \, g_{4}. \end{split}$$

An passung an die vorgegebene $\Delta \widetilde{G}^E_{\rm KCl}\text{-}{\rm Kurve}$ führt zu folgenden Parametern :

$$g_{1} = \frac{4340 \text{ cal/Mol}}{4340 \text{ cal/Mol}},$$

$$g_{2} = -\frac{980 \text{ cal/Mol}}{93} = \frac{20 \text{ cal/Mol}}{20 \text{ cal/Mol}},$$

$$g_{4} = -\frac{1040 \text{ cal/Mol}}{1000 \text{ cal/Mol}}.$$
(19)

1631

1632 A. Neckel u. a: Ermittlung der freien Mischungsenthalpie

Mit Hilfe der Parameter (19) berechnet man für x = 0.709 nach (18 b) $\Delta \overline{G}_{\mathrm{K}}^{E} = 146 \text{ cal/Mol.}$ Beginnend mit diesem Wert wurden die Größen $\Delta_{i} (\Delta \overline{G}_{\mathrm{K}}^{E})$ (16 b) aufsummiert. Die so erhaltenen Werte für $\Delta \overline{G}_{\mathrm{K}}^{E}$ stimmen jedoch mit jenen, die sich nach (18 b) und (19) ergeben, überein, so daß hier von einer Wiedergabe abgesehen wird.

In Tab. 6 sind die sich nach (17) und (18) mit Hilfe der Konstanten (19) ermittelten Werte von ΔG^E , $\Delta \overline{G}^E_{\mathbf{KCl}}$ und $\Delta \overline{G}^E_{\mathbf{K}}$ dargestellt. Diese sind naturgemäß mit einer größeren Unsicherheit behaftet als die Werte für das System NaCl—Na. Am genauesten sollten noch die durch numerische Integration erhaltenen Angaben für $\Delta \overline{G}^E_{\mathbf{KCl}}$ sein, während durch Extrapolation dieser Funktion zweifellos ein beträchtlicher Fehler eingeführt werden kann.

Dem Vorstand des Institutes für Physikalische Chemie der Universität Wien, Herrn Prof. Dr. *H. Nowotny*, bin ich für seine stete Förderung zu großem Dank verpflichtet.